References

  1. T.V. Ramachandra, R. Jain, G. Krishnadas, Hotspots of solar potential in India, Renew. Sustain. Energy Rev. 15 (2011) 3178e3186, https://doi.org/10.1016/ J.RSER.2011.04.007.
  2. E.M. Shahid, Y. Jamal, Production of biodiesel: a technical review, Renew. Sustain. Energy Rev. 15 (2011) 4732e4745, https://doi.org/10.1016/ J.RSER.2011.07.079.
  3. T.V. Ramachandra, M. Durga Madhab, S. Shilpi, N.V. Joshi, Algal biofuel from urban wastewater in India: scope and challenges, Renew. Sustain. Energy Rev. 21 (2013) 767e777, https://doi.org/10.1016/j.rser.2012.12.029.
  4. A.E. Atabani, A.S. Silitonga, I.A. Badruddin, T.M.I. Mahlia, H.H. Masjuki,

S. Mekhilef, A comprehensive review on biodiesel as an alternative energy resource and its characteristics, Renew. Sustain. Energy Rev. 16 (2012) 2070e2093, https://doi.org/10.1016/J.RSER.2012.01.003.

  1. Y. Su, K. Song, P. Zhang, Y. Su, J. Cheng, X. Chen, Progress of microalgae biofuel’s commercialization, Renew. Sustain. Energy Rev. 74 (2017) 402e411, https://doi.org/10.1016/j.rser.2016.12.078.
  2. X.-G. Zhu, S.P. Long, D.R. Ort, What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr. Opin. Bio- technol. 19 (2008) 153e159, https://doi.org/10.1016/J.COPBIO.2008.02.004.
  3. J.S. Boyer, Plant productivity and environment, Science 218 (1982) 443e448, https://doi.org/10.1126/science.218.4571.443.
  4. Y. Guo, T. Yeh, W. Song, D. Xu, S. Wang, A review of bio-oil production from hydrothermal liquefaction of algae, Renew. Sustain. Energy Rev. 48 (2015) 776e790, https://doi.org/10.1016/J.RSER.2015.04.049.
  5. A. Darzins, P.T. Pienkos, The Promise and Challenges of Microalgal-Derived Biofuels, 2009, https://doi.org/10.1002/bbb.159.
  6. Y. Chisti, M. Seibert, R. Davis, N. Sweeney, S. Wychen, A. Lowell, P. Pienkos,
    1. Archibald, J. Granados, C. Greene, Biodiesel from microalgae, Biotechnol. Adv. 25 (2007) 294e306, https://doi.org/10.1016/j.biotechadv.2007.02.001.
  7. F. Moazeni, Y.-C. Chen, G. Zhang, Enzymatic transesterification for biodiesel production from used cooking oil, a review, J. Clean. Prod. 216 (2019) 117e128, https://doi.org/10.1016/J.JCLEPRO.2019.01.181.
  8. B. Kayode, A. Hart, An overview of transesterification methods for producing biodiesel from waste vegetable oils, Biofuels (2017) 1e19, https://doi.org/ 10.1080/17597269.2017.1306683.
  9. Z. Amini, H.C. Ong, M.D. Harrison, F. Kusumo, H. Mazaheri, Z. Ilham, Biodiesel production by lipase-catalyzed transesterification of Ocimum basilicum L. (sweet basil) seed oil, Energy Convers. Manag. 132 (2017) 82e90, https:// doi.org/10.1016/J.ENCONMAN.2016.11.017.
  10. A. Louwrier, Industrial products - the return to carbohydrate-based in- dustries, Biotechnol. Appl. Biochem. 27 (1998) 1e8, https://doi.org/10.1111/ j.1470-8744.1998.tb01368.x.
  11. F. Beisson, V. Arondel, R. Verger, Assaying Arabidopsis lipase activity, Bio- chem. Soc. Trans. 28 (2000) 773e775, https://doi.org/10.1042/0300-5127: 0280773.
  12. M.I. Van Dyke, H. Lee, J.T. Trevors, Applications of microbial surfactants, Biotechnol. Adv. 9 (1991) 241e252, https://doi.org/10.1016/0734-9750(91) 90006-H.
  13. M.-L. Jia, X.-L. Zhong, Z.-W. Lin, B.-X. Dong, G. Li, Expression and character- ization of an esterase belonging to a new family via isolation from a meta- genomic library of paper mill sludge, Int. J. Biol. Macromol. 126 (2019) 1192e1200, https://doi.org/10.1016/J.IJBIOMAC.2019.01.025.
  14. B. Ozcan, G. Ozyilmaz, C. Cokmus, M. Caliskan, Characterization of extracel- lular esterase and lipase activities from five halophilic archaeal strains, J. Ind. Microbiol. Biotechnol. 36 (2009) 105e110, https://doi.org/10.1007/s10295- 008-0477-8.
  15. L. Ramnath, B. Sithole, R. Govinden, Identification of lipolytic enzymes iso- lated from bacteria indigenous to Eucalyptus wood species for application in the pulping industry, Biotechnol. Rep. 15 (2017) 114e124, https://doi.org/ 10.1016/j.btre.2017.07.004.
  16. C.L. Teo, H. Jamaluddin, N.A.M. Zain, A. Idris, Biodiesel production via lipase catalysed transesterification of microalgae lipids from Tetraselmis sp, Renew. Energy 68 (2014) 1e5, https://doi.org/10.1016/J.RENENE.2014.01.027.
  17. R.A. Gross, A. Kumar, B. Kalra, Polymer synthesis by in vitro enzyme catalysis, Chem. Rev. 101 (2001) 2097e2124, https://doi.org/10.1021/cr0002590.
  18. S. Chinaglia, L.R. Chiarelli, M. Maggi, M. Rodolfi, G. Valentini, A.M. Picco, Biochemistry of lipolytic enzymes secreted by Penicillium solitum and Cla- dosporium cladosporioides, Biosc. Biotech. Biochem. 78 (2014) 245e254, https://doi.org/10.1080/09168451.2014.882752.
  19. S.C.B. Gopinath, P. Anbu, T. Lakshmipriya, A. Hilda, Strategies to characterize fungal lipases for applications in medicine and dairy industry, BioMed Res. Int. 2013 (2013) 154549, https://doi.org/10.1155/2013/154549.
  20. F. Hasan, A.A. Shah, A. Hameed, Industrial applications of microbial lipases, Enzym. Microb. Technol. 39 (2006) 235e251, https://doi.org/10.1016/ J.ENZMICTEC.2005.10.016.
  21. K.-E. Jaeger, T. Eggert, Lipases for biotechnology, Curr. Opin. Biotechnol. 13 (2002) 390e397, https://doi.org/10.1016/S0958-1669(02)00341-5.
  22. Shraddha, R. Shekher, S. Sehgal, M. Kamthania, A. Kumar, Laccase: microbial

sources, production, purification, and potential biotechnological applica- tions, Enzym. Res. (2011) 217861, https://doi.org/10.4061/2011/217861

(2011).

  1. E.-S. Lin, C.-C. Wang, S.-C. Sung, Cultivating conditions influence lipase production by the edible Basidiomycete Antrodia cinnamomea in submerged culture, Enzym. Microb. Technol. 39 (2006) 98e102, https://doi.org/10.1016/ J.ENZMICTEC.2005.10.002.
  2. B. Sreelatha, V. Koteswara Rao, R. Ranjith Kumar, S. Girisham, S.M. Reddy, Culture conditions for the production of thermostable lipase by Thermo- myces lanuginosus, Beni-Suef Univ. J. Basic Appl. Sci. 6 (2017) 87e95, https:// doi.org/10.1016/J.BJBAS.2016.11.010.
  3. N. Kuratani, H. Shinji, N. Hideo, F. Hideki, Continuous production of biodiesel fuel by enzymatic method, U.S. Patent 9 (879) (2018) 291. https://patents. google.com/patent/US9879291B2/en.
  4. W. Orlando Beys Silva, S. Mitidieri, A. Schrank, M.H. Vainstein, Production and extraction of an extracellular lipase from the entomopathogenic fungus Metarhizium anisopliae, Process Biochem. 40 (2005) 321e326, https:// doi.org/10.1016/J.PROCBIO.2004.01.005.
  5. S. Shah, S. Sharma, M.N. Gupta, Biodiesel Preparation by Lipase-Catalyzed Transesterification of Jatropha Oil, 2004, https://doi.org/10.1021/ef030075z.
  6. S.T. Keera, S.M. El Sabagh, A.R. Taman, Transesterification of vegetable oil to biodiesel fuel using alkaline catalyst, Fuel 90 (2011) 42e47, https://doi.org/ 10.1016/J.FUEL.2010.07.046.
  7. H.-Y. Yoo, J.R. Simkhada, S.S. Cho, H. Park, S.W. Kim, C.N. Seong, J.C. Yoo, A novel alkaline lipase from Ralstonia with potential application in biodiesel production, Bioresour. Technol. 102 (2011) 6104e6111, https://doi.org/ 10.1016/j.biortech.2011.02.046.
  8. D. Surendhiran, M. Vijay, A.R. Sirajunnisa, Biodiesel production from marine microalga Chlorella salina using whole cell yeast immobilized on sugarcane bagasse, J. Environ. Chem. Eng. 2 (2014) 1294e1300, https://doi.org/10.1016/ J.JECE.2014.05.004.
  9. D.-T. Tran, C.-L. Chen, Effect of solvents and oil content on direct trans- esterification of wet oil-bearing microalgal biomass of Chlorella vulgaris ESP- 31 for biodiesel synthesis using immobilized lipase as the biocatalyst, Bio- resour. Technol. 135 (2013) 213e221, https://doi.org/10.1016/ J.BIORTECH.2012.09.101.
  10. J.Z. Chen, S. Wang, B. Zhou, L. Dai, D. Liu, W. Du, A Robust Process for Lipase- Mediated Biodiesel Production from Microalgae Lipid, 2016, https://doi.org/ 10.1039/c6ra07144a.
  11. A. Guldhe, P. Singh, S. Kumari, I. Rawat, K. Permaul, F. Bux, Biodiesel syn- thesis from microalgae using immobilized Aspergillus Niger whole cell lipase biocatalyst, Renew. Energy 85 (2016) 1002e1010, https://doi.org/10.1016/ J.RENENE.2015.07.059.
  12. L. Ramnath, B. Sithole, R. Govinden, Identification of lipolytic enzymes iso- lated from bacteria indigenous to Eucalyptus wood species for application in the pulping industry, Biotechnol. Rep. 15 (2017) 114e124, https://doi.org/ 10.1016/J.BTRE.2017.07.004.
  13. J. Carrazco-Palafox, B.E. Rivera-Chavira, N. Ramírez-Baca, L.I. Manzanares- Papayanopoulos, G.V. Neva rez-Moorillo n, Improved method for qualitative screening of lipolytic bacterial strains, MethodsX 5 (2018) 68e74, https:// doi.org/10.1016/J.MEX.2018.01.004.
  14. D.F.M. Turati, A.F. Almeida, C.C. Terrone, J.M.F. Nascimento, C.R.F. Terrasan,

G. Fernandez-Lorente, B.C. Pessela, J.M. Guisan, E.C. Carmona, Thermotoler- ant lipase from Penicillium sp. section Gracilenta CBMAI 1583: effect of carbon sources on enzyme production, biochemical properties of crude and purified enzyme and substrate specificity, Biocatal. Agric. Biotechnol. 17 (2019) 15e24, https://doi.org/10.1016/j.bcab.2018.10.002.

  1. R. Tripathi, J. Singh, R. kumar Bharti, I.S. Thakur, Isolation, purification and characterization of lipase from microbacterium sp. and its application in biodiesel production, Energy Procedia 54 (2014) 518e529, https://doi.org/ 10.1016/J.EGYPRO.2014.07.293.
  2. P. Supakdamrongkul, A. Bhumiratana, C. Wiwat, Characterization of an extracellular lipase from the biocontrol fungus, Nomuraea rileyi MJ, and its toxicity toward Spodoptera litura, J. Invertebr. Pathol. 105 (2010) 228e235, https://doi.org/10.1016/J.JIP.2010.06.011.
  3. M.M. Maia, A. Heasley, M. Camargo de Morais, E.H. Melo, M. Morais,

W. Ledingham, J. Lima Filho, Effect of culture conditions on lipase production by Fusarium solani in batch fermentation, Bioresour. Technol. 76 (2001) 23e27, https://doi.org/10.1016/S0960-8524(00)00079-1.

  1. F.F. de Castro, A.B.P. Pinheiro, C.B. Nassur, I.P. Barbosa-Tessmann, Mycelium- bound lipase from a locally isolated strain of Aspergillus westerdijkiae, Biocatal. Agric. Biotechnol. 10 (2017) 321e328, https://doi.org/10.1016/ J.BCAB.2017.04.009.
  2. S.-S. Yi, J.-M. Noh, Y.-S. Lee, Amino acid modified chitosan beads: improved polymer supports for immobilization of lipase from Candida rugosa, J. Mol. Catal. B Enzym. 57 (2009) 123e129, https://doi.org/10.1016/ J.MOLCATB.2008.08.002.
  3. D. Palacios, M.D. Busto, N. Ortega, Study of a new spectrophotometric end- point assay for lipase activity determination in aqueous media, LWT - Food Sci. Technol. (Lebensmittel-Wissenschaft -Technol.) 55 (2014) 536e542, https://doi.org/10.1016/J.LWT.2013.10.027.
  4. R.C. Judd, 2I-Peptide mapping of protein III isolated from four strains of Neisseria gonorrhoeae. https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC347578/pdf/iai00149-0232.pdf, 1982. (Accessed 12 June 2019).
  5. U.K. Laemmli, Cleavage of structural proteins during the assembly of the

head of bacteriophage T4, Nature 227 (1970) 680e685, https://doi.org/ 10.1038/227680a0.

  1. M. Tsuji, Y. Yokota, K. Shimohara, S. Kudoh, T. Hoshino, An application of wastewater treatment in a cold environment and stable lipase production of antarctic basidiomycetous yeast Mrakia blollopis, PloS One 8 (2013), https:// doi.org/10.1371/journal.pone.0059376.
  2. R. Gaur, A. Gupta, S.K. Khare, Purification and characterization of lipase from solvent tolerant Pseudomonas aeruginosa PseA, Process Biochem. 43 (2008) 1040e1046, https://doi.org/10.1016/J.PROCBIO.2008.05.007.
  3. Ryther Guillard, f/2 Medium for Growing Diatoms : 2L Recipe, 2005, p. 2005. Techniques.
  4. J.C. Taylor, W.R. Harding, C.G.M. Archibald, A Methods Manual for the Collection, Preparation and Analysis of Diatom Samples, 2007, https:// doi.org/10.2307/2963468.
  5. H. Van Heurck, Van Heurck, A Treatise on the Diatomaceae, Translated by

W.E. Baxter, Citations - Diatoms of North America, 1896 (1896), https:// diatoms.org/citations/van_heurck_h-1896-a_treatise_on_the_diatomaceae_ translated_by_we_baxter. (Accessed 18 August 2018).

  1. R. Simonsen, Patrick Ruth, C.H.W. Reimer, The diatoms of the United States. Vol. I. Mono graphs of the academy of natural sciences of philadelphia, 13, xi 688 pp., 64 Taf., Philadelphia, Internationale Revue Der Gesamten Hydrobiologie Und Hydrographie 53 (1966) 166e167, https://doi.org/ 10.1002/iroh.19680530120 (1968).

þ

  1. X.L. Li, T.K. Marella, L. Tao, L. Peng, C.F. Song, L.L. Dai, A. Tiwari, G. Li, A novel growth method for diatom algae in aquaculture waste water for natural food development and nutrient removal, Water Sci. Technol. 75 (2017) 2777e2783, https://doi.org/10.2166/wst.2017.156.
  2. M. Axelsson, F. Gentili, A single-step method for rapid extraction of total lipids from green microalgae, PloS One 9 (2014), e89643, https://doi.org/ 10.1371/journal.pone.0089643.
  3. R. Jambulingam, M. Shalma, V. Shankar, Biodiesel production using lipase immobilised functionalized magnetic nanocatalyst from oleaginous fungal lipid, J. Clean. Prod. 215 (2019) 245e258, https://doi.org/10.1016/ J.JCLEPRO.2018.12.146.
  4. L. Zhu, Z. Wang, Q. Shu, J. Takala, E. Hiltunen, P. Feng, Z. Yuan, Nutrient removal and biodiesel production by integration of freshwater algae culti- vation with piggery wastewater treatment, Water Res. 47 (2013) 4294e4302, https://doi.org/10.1016/J.WATRES.2013.05.004.
  5. B. Bharathiraja, R. Ranjith Kumar, R. PraveenKumar, M. Chakravarthy,

D. Yogendran, J. Jayamuthunagai, Biodiesel production from different algal oil using immobilized pure lipase and tailor made rPichia pastoris with Cal A and Cal B genes, Bioresour. Technol. 213 (2016) 69e78, https://doi.org/ 10.1016/J.BIORTECH.2016.02.041.

  1. A.F. Panichikkal, P. Prakasan, U. Kizhakkepowathial Nair, M. Kulangara Valappil, Optimization of parameters for the production of biodiesel from rubber seed oil using onsite lipase by response surface methodology, 3 Biotech 8 (2018) 459, https://doi.org/10.1007/s13205-018-1477-7.
  2. K. Ramluckan, K.G. Moodley, F. Bux, An evaluation of the efficacy of using selected solvents for the extraction of lipids from algal biomass by the soxhlet extraction method, Fuel 116 (2014) 103e108, https://doi.org/ 10.1016/J.FUEL.2013.07.118.
  3. C.A.L. Abe, C.B. Faria, F.F. de Castro, S.R. de Souza, F.C. dos Santos, C.N. da Silva, D.J. Tessmann, I.P. Barbosa-Tessmann, Fungi isolated from maize (Zea mays L.) grains and production of associated enzyme activities, Int. J. Mol. Sci. 16 (2015) 15328e15346, https://doi.org/10.3390/ijms160715328.
  4. S. Chinaglia, L.R. Chiarelli, M. Maggi, M. Rodolfi, G. Valentini, A.M. Picco, Biochemistry of lipolytic enzymes secreted by Penicillium solitum and Cla- dosporium cladosporioides, Biosci. Biotechnol. Biochem. 78 (2014) 245e254, https://doi.org/10.1080/09168451.2014.882752.
  5. P. Hong, S. Koza, E.S.P. Bouvier, Size-exclusion chromatography for the analysis of protein biotherapeutics and their aggregates, J. Liq. Chromatogr. Relat. Technol. 35 (2012) 2923e2950, https://doi.org/10.1080/ 10826076.2012.743724.
  6. P. Supakdamrongkul, A. Bhumiratana, C. Wiwat, Characterization of an extracellular lipase from the biocontrol fungus, Nomuraea rileyi MJ, and its toxicity toward Spodoptera litura, J. Invertebr. Pathol. 105 (2010) 228e235, https://doi.org/10.1016/j.jip.2010.06.011.
  7. W. Sto€cklein, H. Sztajer, U. Menge, R.D. Schmid, Purification and properties of a lipase from Penicillium expansum, Biochim. Biophys. Acta Lipids Lipid. Metabol. 1168 (1993) 181e189, https://doi.org/10.1016/0005-2760(93) 90123-Q.
  8. M. Yig itog lu, Z. Temoçin, Immobilization of Candida rugosa lipase on glutaraldehyde-activated polyester fiber and its application for hydrolysis of some vegetable oils, J. Mol. Catal. B Enzym. 66 (2010) 130e135, https:// doi.org/10.1016/J.MOLCATB.2010.04.007.
  9. C.M. Romero, M.D. Baigori, L.M. Pera, Catalytic properties of mycelium- bound lipases from Aspergillus Niger MYA 135, Appl. Microbiol. Bio- technol. 76 (2007) 861e866, https://doi.org/10.1007/s00253-007-1067-9.
  10. A. Salihu, M. Zahangir Alam, M. Ismail AbdulKarim, H.M. Salleh, Effect of process parameters on lipase production by Candida cylindracea in stirred tank bioreactor using renewable palm oil mill effluent based medium, J. Mol. Catal. B Enzym. 72 (2011) 187e192, https://doi.org/10.1016/ j.molcatb.2011.06.004.
  11. F.F. de Castro, A.B.P. Pinheiro, C.B. Nassur, I.P. Barbosa-Tessmann, Mycelium- bound lipase from a locally isolated strain of Aspergillus westerdijkiae,

Biocatal. Agric. Biotechnol. 10 (2017) 321e328, https://doi.org/10.1016/ J.BCAB.2017.04.009.

  1. M. Essamri, V. Deyris, L. Comeau, Optimization of lipase production by Rhizopus oryzae and study on the stability of lipase activity in organic sol- vents, J. Biotechnol. 60 (1998) 97e103, https://doi.org/10.1016/S0168- 1656(97)00193-4.
  2. M. Naushad, Z.A. ALOthman, A.B. Khan, M. Ali, Effect of ionic liquid on ac- tivity, stability, and structure of enzymes: a review, Int. J. Biol. Macromol. 51 (2012) 555e560, https://doi.org/10.1016/J.IJBIOMAC.2012.06.020.
  3. P. Supakdamrongkul, A. Bhumiratana, C. Wiwat, Characterization of an extracellular lipase from the biocontrol fungus, Nomuraea rileyi MJ, and its toxicity toward Spodoptera litura, J. Invertebr. Pathol. 105 (2010) 228e235, https://doi.org/10.1016/j.jip.2010.06.011.
  4. A. Hiol, M.D. Jonzo, N. Rugani, D. Druet, L. Sarda, L.C. Comeau, Purification and characterization of an extracellular lipase from a thermophilic Rhizopus oryzae strain isolated from palm fruit, Enzym. Microb. Technol. 26 (2000) 421e430, https://doi.org/10.1016/S0141-0229(99)00173-8.
  5. M. Yu, S. Qin, T. Tan, Purification and characterization of the extracellular lipase Lip2 from Yarrowia lipolytica, Process Biochem. 42 (2007) 384e391, https://doi.org/10.1016/J.PROCBIO.2006.09.019.
  6. K. Krammer, H. Bertolet, K. Krammer, H. Lange-Bertalot, Bacillariophyceae. 1. Teil: naviculaceae, in: H. Ettl, J. Gerloff, H. Heynig, D. Mollenhauer (Eds.), Süsswasserora von Mitteleuropa, 1986. Band 2/1., 1986.
  7. J. Pruvost, G. Van Vooren, B. Le Gouic, A. Couzinet-Mossion, J. Legrand, Sys- tematic investigation of biomass and lipid productivity by microalgae in photobioreactors for biodiesel application, Bioresour. Technol. 102 (2011) 150e158, https://doi.org/10.1016/J.BIORTECH.2010.06.153.
  8. C.A. Popovich, M. Pistonesi, P. Hegel, D. Constenla, G.B. Bielsa, L.A. Martín,

M.C. Damiani, P.I. Leonardi, Unconventional alternative biofuels: quality assessment of biodiesel and its blends from marine diatom Navicula cincta, Algal Res. 39 (2019) 101438, https://doi.org/10.1016/J.ALGAL.2019.101438.

  1. M.J. Griffiths, R.P. van Hille, S.T.L. Harrison, Lipid productivity, settling po- tential and fatty acid profile of 11 microalgal species grown under nitrogen replete and limited conditions, J. Appl. Phycol. 24 (2012) 989e1001, https:// doi.org/10.1007/s10811-011-9723-y.
  2. T.K. Marella, N.R. Parine, A. Tiwari, Potential of diatom consortium developed by nutrient enrichment for biodiesel production and simultaneous nutrient removal from waste water, Saudi J. Biol. Sci. 25 (2018) 704e709, https:// doi.org/10.1016/J.SJBS.2017.05.011.
  3. M.M. Joseph, K.R. Renjith, G. John, S.M. Nair, N. Chandramohanakumar, Biodiesel prospective of five diatom strains using growth parameters and fatty acid profiles, Biofuels 8 (2017) 81e89, https://doi.org/10.1080/ 17597269.2016.1204585.
  4. G.B. Bielsa, C.A. Popovich, M.C. Rodríguez, A.M. Martínez, L.A. Martín,

M.C. Matulewicz, P.I. Leonardi, Simultaneous production assessment of tri- acylglycerols for biodiesel and exopolysaccharides as valuable co-products in Navicula cincta, Algal Res. 15 (2016), https://doi.org/10.1016/ j.algal.2016.01.013.

  1. G. Saranya, M.D. Subashchandran, P. Mesta, T.V. Ramachandra, Prioritization of prospective third-generation biofuel diatom strains, Energy, Ecol. Environ. 3 (2018) 338e354, https://doi.org/10.1007/s40974-018-0105-z.
  2. F. Mus, J.-P. Toussaint, K.E. Cooksey, M.W. Fields, R. Gerlach, B.M. Peyton,

R.P. Carlson, Physiological and Molecular Analysis of Carbon Source Sup- plementation and pH Stress-Induced Lipid Accumulation in the Marine Diatom Phaeodactylum Tricornutum, 2013, https://doi.org/10.1007/s00253- 013-4747-7.

  1. G. Knothe, Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters, Fuel Process. Technol. 86 (2005) 1059e1070, https:// doi.org/10.1016/J.FUPROC.2004.11.002.
  2. T.V. Ramachandra, D.M. Mahapatra, K.B., R. Gordon, Milking diatoms for sustainable energy: biochemical engineering versus gasoline-secreting diatom solar panels, Ind. Eng. Chem. Res. 48 (2009) 8769e8788, https:// doi.org/10.1021/ie900044j.
  3. D.M. Mahapatra, H.N. Chanakya, T.V. Ramachandra, Bioremediation and lipid synthesis through mixotrophic algal consortia in municipal wastewater, Bioresour. Technol. 168 (2014) 142e150, https://doi.org/10.1016/ j.biortech.2014.03.130.
  4. C.L. Teo, H. Jamaluddin, N.A.M. Zain, A. Idris, Biodiesel production via lipase catalysed transesterification of microalgae lipids from Tetraselmis sp, Renew. Energy 68 (2014) 1e5, https://doi.org/10.1016/J.RENENE.2014.01.027.
  5. X.-Q. Xu, J. Beardall, Effect of salinity on fatty acid composition of a green microalga from an antarctic hypersaline lake, Phytochemistry 45 (1997) 655e658, https://doi.org/10.1016/S0031-9422(96)00868-0.
  6. G.G. Satpati, P. Chandra Gorain, I. Paul, R. Pal, An integrated salinity-driven workflow for rapid lipid enhancement in green microalgae for biodiesel application, RSC Adv. 6 (2016) 112340e112355, https://doi.org/10.1039/ C6RA23933A.
  7. S. AS, Biodiesel and polyunsaturated fatty acid (PUFA) potential of MicroalgaeBiomass-A short review, Res. Dev. Mater. Sci. 10 (2019), https:// doi.org/10.31031/rdms.2019.10.000744.
  8. I.A. Nascimento, S.S.I. Marques, I.T.D. Cabanelas, S.A. Pereira, J.I. Druzian,

C.O. de Souza, D.V. Vich, G.C. de Carvalho, M.A. Nascimento, Screening microalgae strains for biodiesel production: lipid productivity and estima- tion of fuel quality based on fatty acids profiles as selective criteria, Bio- Energy Res. 6 (2013) 1e13, https://doi.org/10.1007/s12155-012-9222-2.

  1. P.M. Schenk, S.R. Thomas-Hall, E. Stephens, U.C. Marx, J.H. Mussgnug,

C. Posten, O. Kruse, B. Hankamer, Second generation biofuels: high-efficiency microalgae for biodiesel production, BioEnergy Res. 1 (2008) 20e43, https:// doi.org/10.1007/s12155-008-9008-8.

  1. T. Veeranan, R. Kasirajaan, B. Gurunathan, R. Sahadevan, A novel approach for extraction of algal oil from marine macroalgae Ulva fasciata, Renew. Energy 127 (2018) 64e73, https://doi.org/10.1016/J.RENENE.2017.12.071.
  2. M.A. Njoki, G. Mercy, G. Nyagah, A. Gachanja, Fourier Transform Infrared Spectrophotometric Analysis of Functional Groups Found in Ricinus Com- munis L. And Cucurbita Maxima Lam. Roots, Stems and Leaves as Heavy Metal Adsorbents, 2016. www.ijset.net. (Accessed 24 July 2019).
  3. S. Bargole, S. George, V. Kumar Saharan, Improved rate of transesterification reaction in biodiesel synthesis using hydrodynamic cavitating devices of high throat perimeter to flow area ratios, Chem. Eng. Proc. - Process Inten- sification 139 (2019) 1e13, https://doi.org/10.1016/J.CEP.2019.03.012.
  4. A.Y. Oyerinde, E.I. Bello, E. Lanchares Sancho, Article no.BJAST.22178 re- viewers: (1) J. Gimbun, original research article oyerinde and bello, BJAST (2016) 1e14, https://doi.org/10.9734/BJAST/2016/22178.
  5. J.T. Kloprogge, R.D. Schuiling, Z. Ding, L. Hickey, D. Wharton, R.L. Frost, Vibrational spectroscopic study of syngenite formed during the treatment of liquid manure with sulphuric acid, Vib. Spectrosc. 28 (2002) 209e221, https://doi.org/10.1016/S0924-2031(01)00139-4.
  6. A.F. Ferreira, A.P.S. Dias, C.M. Silva, M. Costa, Bio-oil and bio-char charac- terization from microalgal biomass, V Confer{e^}ncia Nacional de Mec{a^}nica Dos Fluidos, Termodin{^a}mica e Energia (Fifth National Conference on Fluid Mechanics, Thermodynamics and Energy), 2014, pp. 11e12. http://paginas. fe.up.pt/~mefte2014/wp-content/uploads/2014/preprint/mefte2014_ submission_45.pdf.
  7. A. Adenike Evelyn, O. Abiodun Oluwafemi, Spectroscopic analysis of oil extracted from seeds of hildegardia barteri (Mast.) kosterm, 2018, https:// doi.org/10.4172/2329-6836.1000325.
  8. R. Tripathi, J. Singh, R. kumar Bharti, I.S. Thakur, Isolation, purification and characterization of lipase from microbacterium sp. and its application in biodiesel production, Energy Procedia 54 (2014) 518e529, https://doi.org/ 10.1016/J.EGYPRO.2014.07.293.
  9. A. Guldhe, B. Singh, I. Rawat, K. Permaul, F. Bux, Biocatalytic conversion of lipids from microalgae Scenedesmus obliquus to biodiesel using Pseudo- monas fluorescens lipase, Fuel 147 (2015) 117e124, https://doi.org/10.1016/ j.fuel.2015.01.049.
  10. C.G. Lopresto, S. Naccarato, L. Albo, M.G. De Paola, S. Chakraborty, S. Curcio,

V. Calabro , Enzymatic transesterification of waste vegetable oil to produce biodiesel, Ecotoxicol. Environ. Saf. 121 (2015) 229e235, https://doi.org/ 10.1016/J.ECOENV.2015.03.028.

  1. J.Z. Chen, S. Wang, B. Zhou, L. Dai, D. Liu, W. Du, A robust process for lipase- mediated biodiesel production from microalgae lipid, RSC Adv. 6 (2016) 48515e48522, https://doi.org/10.1039/C6RA07144A.
  2. B. Scholz, G. Liebezeit, Biochemical characterisation and fatty acid profiles of 25 benthic marine diatoms isolated from the Soltho€rn tidal flat (southern North Sea), J. Appl. Phycol. 25 (2013) 453e465, https://doi.org/10.1007/ s10811-012-9879-0.
  3. C. Delgado, I. Pardo, L. García, Diatom communities as indicators of ecological status in Mediterranean temporary streams (Balearic Islands, Spain), Ecol. Indicat. 15 (2012) 131e139, https://doi.org/10.1016/J.ECOLIND.2011.09.037.
  4. F. in the T.L.C. and B.C. of D.S. for P.B.P Zhao, J. Liang, Y. Gao, Q. Luo, Y. Yu,

C. Chen, L. Sun, Variations in the total lipid content and biological charac- teristics of diatom species for potential biodiesel production, Fund. Renew. Energy Appl. 6 (2016) 22e26, https://doi.org/10.4172/20904541.1000201.

  1. F.J. Fields, J.P. Kociolek, An evolutionary perspective on selecting high-lipid- content diatoms (Bacillariophyta), J. Appl. Phycol. 27 (2015) 2209e2220, https://doi.org/10.1007/s10811-014-0505-1.
  2. S. Hausmann, D.F. Charles, J. Gerritsen, T.J. Belton, A diatom-based biological

condition gradient (BCG) approach for assessing impairment and developing nutrient criteria for streams, Sci. Total Environ. 562 (2016) 914e927, https:// doi.org/10.1016/j.scitotenv.2016.03.173.

  1. M.R. De La Pen~a, Cell growth and nutritive value of the tropical benthic diatom, Amphora sp., at varying levels of nutrients and light intensity, and different culture locations, Springer Verlag, J. Appl. Phycol. (2007) 647e655, https://doi.org/10.1007/s10811-007-9189-0.
  2. G. d’Ippolito, A. Sardo, D. Paris, F.M. Vella, M.G. Adelfi, P. Botte, C. Gallo,

A. Fontana, Potential of lipid metabolism in marine diatoms for biofuel production, Biotechnol. Biofuels 8 (2015) 28, https://doi.org/10.1186/ s13068-015-0212-4.

  1. J.C. Taylor, J. Prygiel, A. Vosloo, P.A. de la Rey, L. van Rensburg, Can diatom- based pollution indices be used for biomonitoring in South Africa? A case study of the Crocodile West and Marico water management area, Hydro- biologia 592 (2007) 455e464, https://doi.org/10.1007/s10750-007-0788-1.
  2. L. Chen, T. Liu, W. Zhang, X. Chen, J. Wang, Biodiesel production from algae oil high in free fatty acids by two-step catalytic conversion, Bioresour. Technol. 111 (2012) 208e214, https://doi.org/10.1016/ J.BIORTECH.2012.02.033.
  3. J. Sheehan, T. Dunahay, J. Benemann, P. Roessler, Look Back at the U.S. Department of Energy’s Aquatic Species Program: Biodiesel from Algae, 1998, https://doi.org/10.2172/15003040. Close-Out Report.
  4. X. Tan, Q. Zhang, M.A. Burford, F. Sheldon, S.E. Bunn, Benthic diatom based indices for water quality assessment in two subtropical streams, Front. Microbiol. 8 (2017) 601. https://www.frontiersin.org/article/10.3389/fmicb. 2017.00601.
  5. X. Tan, X. Xia, Q. Zhao, Q. Zhang, Temporal variations of benthic diatom community and its main influencing factors in a subtropical river, China, Environ. Sci. Pollut. Control Ser. 21 (2014) 434e444, https://doi.org/10.1007/ s11356-013-1898-0.
  6. M. Branco-Vieira, S. San Martin, C. Agurto, M. Santos, M. Freitas, T. Mata,

A. Martins, N. Caetano, M. Branco-Vieira, S. San Martin, C. Agurto, M.A. dos Santos, M.A.V. Freitas, T.M. Mata, A.A. Martins, N.S. Caetano, Potential of phaeodactylum tricornutum for biodiesel production under natural condi- tions in Chile, Energies 11 (2017) 54, https://doi.org/10.3390/en11010054.

  1. A. Hiol, M.D. Jonzo, D. Druet, L. Comeau, Production, purification and char- acterization of an extracellular lipase from Mucor hiemalis f. hiemalis, Enzym. Microb. Technol. 25 (1999) 80e87, https://doi.org/10.1016/S0141- 0229(99)00009-5.
  2. M.D. Jonzo, A. Hiol, D. Druet, L.C. Comeau, Application of immobilized lipase fromCandida rugosa to synthesis of cholesterol oleate, J. Chem. Technol. Biotechnol. 69 (1997) 463e469, https://doi.org/10.1002/(SICI)1097- 4660(199708)69:4<463::AID-JCTB738>3.0.CO;2-2.
  3. H. Noureddini, X. Gao, R.S. Philkana, Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil, Bioresour. Technol. 96 (2005) 769e777, https://doi.org/10.1016/j.biortech.2004.05.029.
  4. S. Shah, S. Sharma, M.N. Gupta, Biodiesel Preparation by Lipase-Catalyzed Transesterification of Jatropha Oil, 2004, https://doi.org/10.1021/ef030075z.
  5. K. Nie, F. Xie, F. Wang, T. Tan, Lipase catalyzed methanolysis to produce biodiesel: optimization of the biodiesel production, J. Mol. Catal. B Enzym. 43 (2006) 142e147, https://doi.org/10.1016/J.MOLCATB.2006.07.016.
  6. D.T. Tran, C.L. Chen, J.S. Chang, Effect of solvents and oil content on direct transesterification of wet oil-bearing microalgal biomass of Chlorella vul- garis ESP-31 for biodiesel synthesis using immobilized lipase as the biocat- alyst, Bioresour. Technol. (2013), https://doi.org/10.1016/ j.biortech.2012.09.101.
  7. M. Xiao, R. Intan, J.P. Obbard, Biodiesel production from microalgae oil-lipid feedstock via immobilized whole-cell biocatalysis, in: Proceedings Venice, Third International Symposium on Energy from Biomass and Waste, Venice, Italy, 2010, pp. 8e11.